Difference between revisions of "Rocket Team"
(Updated all sections to reflect team change: new overall descriptions, new sub-team descriptions.) (Tag: Visual edit) |
|||
Line 20: | Line 20: | ||
}} | }} | ||
}} | }} | ||
− | McGill | + | The McGill Rocket Team is an EUS Design Team that aims to develop a Canadian aerospace community by providing students with practical experience in the development of rocket technologies and by promoting the Canadian aerospace industry. In practice, this means that members of the team build sounding rockets for various student rocketry competitions. The main competition has been the Intercollegiate Rocket Engineering Competition (IREC), but as of 2018, the team entered the [http://base11spacechallenge.org/ Base11 Space Challenge] , and is planning to compete in the first [http://www.launchcanada.org/ Launch Canada] competition in summer 2020. The team, founded in 2014, has since grown from 20 members to 140 members, and is among the biggest design teams |
== Subteams == | == Subteams == | ||
− | McGill Rocket Team is split into | + | McGill Rocket Team is split into five sub-teams: Aerostructures, Avionics, Payload, Propulsion, and Management. Each sub-team operates as a semi-autonomous entity, with project requirements set by team leadership at the beginning of the design cycle. |
− | === | + | |
− | + | === Aerostructures === | |
− | === | + | Aerostructures is responsible for designing and building the external airframe and internal structure of the rockets. The team performs aerodynamic analysis on the airframe, and load analysis on the internal structures to ensure weight is minimized while still meeting each subsystem's requirements. The team has developed its composites manufacturing techniques, making the whole airframe out of carbon fiber and fiberglass manufactured in house. Additionally, Aerostructures is responsible for the recovery apparatus (parachutes, shock cords, etc.) and its integration with the internal structure. |
− | + | ||
+ | === Avionics === | ||
+ | Avionics designs a wide array of electrical systems on the rocket and the ground, including but not limited to: rocket telemetry, recovery sequence circuits, and ground communications. Avionics also collaborates heavily with Aerostructures for the design of the avionics bay for the main electronics. The Avionics team converts the rocket from a ballistic composite dart to a safe, recoverable, and re-usable payload delivery system (depending on how well we do our job). The team designs and builds its own integrated circuits, and integrates off-the-shelf components with the circuits. | ||
+ | |||
===Payload=== | ===Payload=== | ||
− | + | Payload is tasked with designing and building a payload that will carry out an experiment during rocket flight, at apogee, or during descent. In general, experiments leverage either the intense accelerations induced by the rocket motor, the apogee the rocket reaches, or the time it spends in the lower atmosphere after parachute deployment. Experiments only have hard weight constraints, with more flexible dimension constraints, and the purpose of the experiment is up to each year's payload team to decide: for example, the 2017-2018 payloads were an atmospheric bacterial sampling experiment and an experiment investigating the effects of high acceleration on small-scale brain models. | |
===Propulsion=== | ===Propulsion=== | ||
− | + | Propulsion focuses on rocket engine systems, and the related infrastructure. For IREC, Propulsion selects suitable solid rocket motors from known retailers by performing flight simulations. For other types of engines, Propulsion designs and tests individual components and performs the appropriate analysis to predict and understand engine performance. Since rocket engine design is risky business, Propulsion also creates the infrastructure surrounding any engine test through systematic risk analysis. | |
− | + | ===Management=== | |
− | + | Management is responsible for the operation and logistics of team operation. This includes organizing events, managing the team's social media, contacting sponsors, and planning outreach efforts. | |
− | === | ||
− | |||
− | |||
− | |||
− | |||
[[Category:Design Teams]] | [[Category:Design Teams]] |
Revision as of 14:15, 2 March 2019
This article is still in progress. Please consider completing it.
![]() | |||||||||||
|
The McGill Rocket Team is an EUS Design Team that aims to develop a Canadian aerospace community by providing students with practical experience in the development of rocket technologies and by promoting the Canadian aerospace industry. In practice, this means that members of the team build sounding rockets for various student rocketry competitions. The main competition has been the Intercollegiate Rocket Engineering Competition (IREC), but as of 2018, the team entered the Base11 Space Challenge , and is planning to compete in the first Launch Canada competition in summer 2020. The team, founded in 2014, has since grown from 20 members to 140 members, and is among the biggest design teams
Subteams
McGill Rocket Team is split into five sub-teams: Aerostructures, Avionics, Payload, Propulsion, and Management. Each sub-team operates as a semi-autonomous entity, with project requirements set by team leadership at the beginning of the design cycle.
Aerostructures
Aerostructures is responsible for designing and building the external airframe and internal structure of the rockets. The team performs aerodynamic analysis on the airframe, and load analysis on the internal structures to ensure weight is minimized while still meeting each subsystem's requirements. The team has developed its composites manufacturing techniques, making the whole airframe out of carbon fiber and fiberglass manufactured in house. Additionally, Aerostructures is responsible for the recovery apparatus (parachutes, shock cords, etc.) and its integration with the internal structure.
Avionics
Avionics designs a wide array of electrical systems on the rocket and the ground, including but not limited to: rocket telemetry, recovery sequence circuits, and ground communications. Avionics also collaborates heavily with Aerostructures for the design of the avionics bay for the main electronics. The Avionics team converts the rocket from a ballistic composite dart to a safe, recoverable, and re-usable payload delivery system (depending on how well we do our job). The team designs and builds its own integrated circuits, and integrates off-the-shelf components with the circuits.
Payload
Payload is tasked with designing and building a payload that will carry out an experiment during rocket flight, at apogee, or during descent. In general, experiments leverage either the intense accelerations induced by the rocket motor, the apogee the rocket reaches, or the time it spends in the lower atmosphere after parachute deployment. Experiments only have hard weight constraints, with more flexible dimension constraints, and the purpose of the experiment is up to each year's payload team to decide: for example, the 2017-2018 payloads were an atmospheric bacterial sampling experiment and an experiment investigating the effects of high acceleration on small-scale brain models.
Propulsion
Propulsion focuses on rocket engine systems, and the related infrastructure. For IREC, Propulsion selects suitable solid rocket motors from known retailers by performing flight simulations. For other types of engines, Propulsion designs and tests individual components and performs the appropriate analysis to predict and understand engine performance. Since rocket engine design is risky business, Propulsion also creates the infrastructure surrounding any engine test through systematic risk analysis.
Management
Management is responsible for the operation and logistics of team operation. This includes organizing events, managing the team's social media, contacting sponsors, and planning outreach efforts.